Regulation of acetylation of plant cell wall components is complex and responds to external stimuli

8Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development.

Cite

CITATION STYLE

APA

Sinclair, S. A., Gille, S., Pauly, M., & Krämer, U. (2020). Regulation of acetylation of plant cell wall components is complex and responds to external stimuli. Plant Signaling & Behavior, 15(1), 1687185. https://doi.org/10.1080/15592324.2019.1687185

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free