This study surveys space weather effects on GNSS (Global Navigation Satellite System) signals in the nighttime auroral and polar cap ionosphere using scintillation receivers, all-sky imagers, and the European Incoherent Scatter Svalbard radar. We differentiate between two types of auroral blobs: blob type 1 (BT 1) which is formed when islands of high-density F region plasma (polar cap patches) enter the nightside auroral oval, and blob type 2 (BT 2) which are generated locally in the auroral oval by intense particle precipitation. For BT 1 blobs we have studied 41.4 h of data between November 2010 and February 2014. We find that BT 1 blobs have significantly higher scintillation levels than their corresponding polar cap patch; however, there is no clear relationship between the scintillation levels of the preexisting polar cap patch and the resulting BT 1 blob. For BT 2 blobs we find that they are associated with much weaker scintillations than BT 1 blobs, based on 20 h of data. Compared to patches and BT 2 blobs, the significantly higher scintillation level for BT 1 blobs implies that auroral dynamics plays an important role in structuring of BT 1 blobs.
CITATION STYLE
Jin, Y., Moen, J. I., Miloch, W. J., Clausen, L. B. N., & Oksavik, K. (2016). Statistical study of the GNSS phase scintillation associated with two types of auroral blobs. Journal of Geophysical Research: Space Physics, 121(5), 4679–4697. https://doi.org/10.1002/2016JA022613
Mendeley helps you to discover research relevant for your work.