MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model

13Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments were conducted to test this hypothesis. In vivo experiments: collagenase type VII was injected into the basal ganglia of adult Sprague-Dawley rats to establish an intracerebral hemorrhage model. MiR-181c mimic or inhibitor was injected in situ 4 hours after intracerebral hemorrhage. Neurological functional defects (neurological severity scores) were assessed 1, 7, and 14 days after model establishment. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and western blot assay were conducted 14 days after model establishment. In vitro experiments: PC12 cells were cultured under oxygen-glucose deprivation, and hemins were added to simulate intracerebral hemorrhage in vitro. MiR-181c mimic or inhibitor was added to regulate miR-181c expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, luciferase reporter system, and western blot assay were performed. Experimental results revealed differences in miR-181c expression in brain tissues of both patients and rats with cerebral hemorrhage. In addition, in vitro experiments found that miR-181c overexpression could upregulate the Bcl-2/Bax ratio to inhibit apoptosis, while inhibition of miR-181c expression could reduce the Bcl-2/Bax ratio and aggravate apoptosis of cells. Regulation of apoptosis occurred through the phosphoinositide 3 kinase (PI3K)/Akt pathway by targeting of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Higher miR-181c overexpression correlated with lower neurological severity scores, indicating better recovery of neurological function. In conclusion, miR-181c affects the prognosis of intracerebral hemorrhage by regulating apoptosis, and these effects might be directly mediated and regulated by targeting of the PTEN-PI3K/Akt pathway and Bcl-2/Bax ratio. Furthermore, these results indicated that miR-181c played a neuroprotective role in intracerebral hemorrhage by regulating apoptosis of nerve cells, thus providing a potential target for the prevention and treatment of intracerebral hemorrhage. Testing of human serum was authorized by the Ethics Committee of China Medical University (No. 2012-38-1) on February 20, 2012. The protocol was registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR-COC-17013559). The animal study was approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. 2017008) on March 8, 2017.

Cite

CITATION STYLE

APA

Lu, X., Zhang, H. Y., & He, Z. Y. (2020). MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model. Neural Regeneration Research, 15(7), 1274–1282. https://doi.org/10.4103/1673-5374.272612

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free