Iodine is oxidized and reduced as part of a biogeochemical cycle that is especially pronounced in the oceans, where the element naturally concentrates. The use of oxidized iodine in the form of iodate (IO3−) as an electron acceptor by microorganisms is poorly understood. Here, we outline genetic, physiological, and ecological models for dissimilatory IO3− reduction to iodide (I−) by a novel estuarine bacterium, Denitromonas sp. IR-12. Our results show that dissimilatory iodate reduction (DIR) by strain IR-12 is molybdenum-dependent and requires an IO3− reductase (idrA) and likely other genes in a mobile cluster with a conserved association across known and predicted DIR microorganisms (DIRM). Based on genetic and physiological data, we propose a model where three molecules of IO3− are likely reduced to three molecules of hypoiodous acid (HIO), which rapidly disproportionate into one molecule of IO3− and two molecules of iodide (I−), in a respiratory pathway that provides an energy yield equivalent to that of nitrate or perchlorate respiration. Consistent with the ecological niche expected of such a metabolism, idrA is enriched in the metagenome sequence databases of marine sites with a specific biogeochemical signature (high concentrations of nitrate and phosphate) and diminished oxygen. Taken together, these data suggest that DIRM help explain the disequilibrium of the IO3−:I− concentration ratio above oxygen-minimum zones and support a widespread iodine redox cycle mediated by microbiology.
CITATION STYLE
Reyes-Umana, V., Henning, Z., Lee, K., Barnum, T. P., & Coates, J. D. (2022). Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans. ISME Journal, 16(1), 38–49. https://doi.org/10.1038/s41396-021-01034-5
Mendeley helps you to discover research relevant for your work.