Abstract
Dipeptidyl-peptidase III (DPP III) hydrolyses small peptides with a broad substrate specificity. It is thought to be involved in a major degradation pathway of the insect neuropeptide proctolin. We report the purification and characterization of a soluble DPP III from 40 g Drosophila melanogaster. Western blot analysis with anti-(DPP III) serum revealed the purification of two proteins of molecular mass 89 and 82 kDa. MS/MS analysis of these proteins resulted in the sequencing of 45 and 41 peptide fragments, respectively, confirming ≈ 60% of both annotated D. melanogaster DPP III isoforms (CG7415-PC and CG7415-PB) predicted at 89 and 82 kDa. Sequencing also revealed the specific catalytic domain HELLGH in both isoforms, indicating that they are both effective in degrading small peptides. In addition, with a probe specific for D. melanogaster DPP III, northern blot analysis of fruit fly total RNA showed two transcripts at ≈ 2.6 and 2.3 kb, consistent with the translation of 89-kDa and 82-kDa DPP III proteins. Moreover, the purified enzyme hydrolyzed the insect neuropeptide proctolin (Km≈ 4 μm) at the second N-terminal peptide bound, and was inhibited by the specific DPP III inhibitor tynorphin. Finally, anti-(DPP III) immunoreactivity was observed in the central nervous system of D. melanogaster larva, supporting a functional role for DPP III in proctolin degradation. This study shows that DPP III is in actuality synthesized in D. melanogaster as 89-kDa and 82-kDa isoforms, representing two native proteins translated from two alternative mRNA transcripts. © 2006 The Authors.
Author supplied keywords
Cite
CITATION STYLE
Mazzocco, C., Gillibert-Duplantier, J., Neaud, V., Fukasawa, K. M., Claverol, S., Bonneu, M., & Puiroux, J. (2006). Identification and characterization of two dipeptidyl-peptidase III isoforms in Drosophila melanogaster. FEBS Journal, 273(5), 1056–1064. https://doi.org/10.1111/j.1742-4658.2006.05132.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.