Though state-of-the-art sentence representation models can perform tasks requiring significant knowledge of grammar, it is an open question how best to evaluate their grammatical knowledge. We explore five experimental methods inspired by prior work evaluating pretrained sentence representation models. We use a single linguistic phenomenon, negative polarity item (NPI) licensing in English, as a case study for our experiments. NPIs like any are grammatical only if they appear in a licensing environment like negation (Sue doesn't have any cats vs. *Sue has any cats). This phenomenon is challenging because of the variety of NPI licensing environments that exist. We introduce an artificially generated dataset that manipulates key features of NPI licensing for the experiments. We find that BERT has significant knowledge of these features, but its success varies widely across different experimental methods. We conclude that a variety of methods is necessary to reveal all relevant aspects of a model's grammatical knowledge in a given domain.
CITATION STYLE
Warstadt, A., Cao, Y., Grosu, I., Peng, W., Blix, H., Nie, Y., … Bowman, S. R. (2019). Investigating Bert’s knowledge of language: Five analysis methods with NPIs. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 2877–2887). Association for Computational Linguistics. https://doi.org/10.18653/v1/d19-1286
Mendeley helps you to discover research relevant for your work.