Seleção e classificação multivariada de modelos de crescimento não linearespara bovinos Nelore

13Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

This study aimed to evaluate cluster analysis in classifying and selecting non linear models to describe Nelore beef cattle growth based on different goodness of fit criteria tests. A total of 12 non linear models were evaluated based on the following criteria: the determination coefficient (R2), error mean square (QME), Akaike information criterion (AIC), Bayesian information criterion (BIC), mean quadratic error of prediction (MEP) and predicted determination coefficient (R2p). The Brody model showed the best adjustment for the data set.

Cite

CITATION STYLE

APA

Silva, N. A. M., Lana, A. M. Q., Silva, F. F., Silveira, F. G., Bergmann, J. A. G., Silva, M. A., & Toral, F. L. B. (2011). Seleção e classificação multivariada de modelos de crescimento não linearespara bovinos Nelore. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 63(2), 364–371. https://doi.org/10.1590/S0102-09352011000200014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free