Brain MRI Classification using Deep Learning Algorithm

  • Kulkarni S
  • et al.
N/ACitations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The brain tumor is one of the most dangerous, common and aggressive diseases which leads to a very short life expectancy at the highest grade. Thus, to prevent life from such disease, early recognition, and fast treatment is an essential step. In this approach, MRI images are used to analyze brain abnormalities. The manual investigation of brain tumor classification is a time-consuming task and there might have possibilities of human errors. Hence accurate analysis in a tiny span of time is an essential requirement. In this approach, the automatic brain tumor classification algorithm using a highly accurate Convolutional Neural Network (CNN) algorithm is presented. Initially, the brain part is segmented by thresholding approach followed by a morphological operation. The AlexNet transfer learning network of CNN is used because of the limitation of the brain MRI dataset. The classification layer of Alexnet is replaced by the softmax layer with benign and malignant training images and trained using small weights. The experimental analysis demonstrates that the proposed system achieves the F-measure of 98.44% with low complexity than the state-of-arts method.

Cite

CITATION STYLE

APA

Kulkarni, S. M., & Sundari, G. (2020). Brain MRI Classification using Deep Learning Algorithm. International Journal of Engineering and Advanced Technology, 9(3), 1226–1231. https://doi.org/10.35940/ijeat.c5350.029320

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free