Introduction High heeled shoes have long been worn in society and they are known to cause biomechanical imbalances to not only the foot, but the whole musculoskeletal system. This study aims to show the detailed changes that happen to the shape of the transverse arch of the foot in high heels, using two different inclination degrees. Methods 68 women participated in this study. Two custom-made high heels were made with inclinations of 15 degrees and 30 degrees (cm). A weight-bearing ultrasound was used to assess the coronal view of the transverse arch in standing. ANOVA and Tuckey tests were used to compare the results between 0 degrees, 15 degrees and 30 degrees inclinations. Results The transverse arch height was slightly increased as the heel height increased (0DI-15DI: p = 0.5852 / 15DI-30DI: p = 0.395 / 0DI-30DI: p = 0.0593). The transverse arch length (0DI-15DI: p = 0.0486 / 15DI-30DI: p = 0.0004 / 0DI-30DI: p = 0.1105) and the area under the metatarsal heads (0DI-15DI: p = 0.0422 / 15DI-30DI: p = 0.0180 / 0DI-30DI: p = 0.9463) significantly decreased as the heel height increased. Discussion The main changes were viewed in the 30 degrees inclinations compared to 0 degrees inclination. When the toes are dorsiflexed in high heels, it stimulates the Windlass mechanism which in turn stiffens the plantar fascia and adducts the metatarsal heads, while the soft tissues shrink in response to loads. Conclusion High heels affected the shape of the transverse arch even in short term standing, and these effects increased as the height of the heel increased.
CITATION STYLE
Zeidan, H., Kawagoe, M., Kajiwara, Y., Harada, K., Nishida, Y., Yamada, K., … Aoyama, T. (2020). The shape of the transverse arch in high heels while standing. PLoS ONE, 15(6). https://doi.org/10.1371/journal.pone.0233958
Mendeley helps you to discover research relevant for your work.