Algorithm for probabilistic dual hesitant fuzzy multi-criteria decision-making based on aggregation operators with new distance measures

65Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Probabilistic dual hesitant fuzzy set (PDHFS) is an enhanced version of a dual hesitant fuzzy set (DHFS) in which each membership and non-membership hesitant value is considered along with its occurrence probability. These assigned probabilities give more details about the level of agreeness or disagreeness. By emphasizing the advantages of the PDHFS and the aggregation operators, in this manuscript, we have proposed several weighted and ordered weighted averaging and geometric aggregation operators by using Einstein norm operations, where the preferences related to each object is taken in terms of probabilistic dual hesitant fuzzy elements. Several desirable properties and relations are also investigated in details. Also, we have proposed two distance measures and its based maximum deviation method to compute the weight vector of the different criteria. Finally, a multi-criteria group decision-making approach is constructed based on proposed operators and the presented algorithm is explained with the help of the numerical example. The reliability of the presented decision-making method is explored with the help of testing criteria and by comparing the results of the example with several prevailing studies.

Cite

CITATION STYLE

APA

Garg, H., & Kaur, G. (2018). Algorithm for probabilistic dual hesitant fuzzy multi-criteria decision-making based on aggregation operators with new distance measures. Mathematics, 6(12). https://doi.org/10.3390/math6120280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free