Abstract
In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600–700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4–12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm−1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm−1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.
Cite
CITATION STYLE
Seferis, I. E., Zeler, J., Michail, C., Valais, I., Fountos, G., Kalyvas, N., … Zych, E. (2016). On the response of semitransparent nanoparticulated films of LuPO4:Eu in poly-energetic X-ray imaging applications. Applied Physics A: Materials Science and Processing, 122(5). https://doi.org/10.1007/s00339-016-0081-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.