Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine

68Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

DNA damage can significantly modulate expression of the affected genes either by direct structural interference with transcription components or as a collateral outcome of cellular repair attempts. Thus, DNA glycosylases of the base excision repair (BER) pathway have been implicated in negative transcriptional response to several spontaneously generated DNA base modifications, including a common oxidative DNA base modification 8-oxoguanine (8-oxoG). Here, we report that single 8-oxoG situated in the non-transcribed DNA strand of a reporter gene has a pronounced negative effect on transcription, driven by promoters of various strength and with different structural properties, including viral, human, and artificial promoters. We further show that the magnitude of the negative effect on the gene expression correlates with excision of the modified base by OGG1 in all promoter constructs tested. Moreover, by using expression vectors with nuclease resistant backbone modifications, we demonstrate that OGG1 does not catalyse DNA strand cleavage in vivo. Rather, cleavage of the phosphate bond 5′ to 8-oxodG (catalysed by APE1) is essential and universally required for the onset of transcriptional silencing, regardless of the promoter structure. Hence, induction of transcriptional silencing emerges as a ubiquitous mode of biological response to 8-oxoG in DNA.

Cite

CITATION STYLE

APA

Allgayer, J., Kitsera, N., Bartelt, S., Epe, B., & Khobta, A. (2016). Widespread transcriptional gene inactivation initiated by a repair intermediate of 8-oxoguanine. Nucleic Acids Research, 44(15), 7267–7280. https://doi.org/10.1093/nar/gkw473

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free