A novel approach for the study of turbulent Rayleigh-Bénard convection (RBC) in the compound physical/scale space domain is presented. All data come from direct numerical simulations of turbulent RBC in a laterally unbounded domain confined between two horizontal walls, for Prandtl number 0:7 and Rayleigh numbers 1:7 ± 105, 1:0 ± 106 and 1:0 ± 107. A preliminary analysis of the flow topology focuses on the events of impingement and emission of thermal plumes, which are identified here in terms of the horizontal divergence of the instantaneous velocity field. The flow dynamics is then described in more detail in terms of turbulent kinetic energy and temperature variance budgets. Three distinct regions where turbulent fluctuations are produced, transferred and finally dissipated are identified: a bulk region, a transitional layer and a boundary layer. A description of turbulent RBC dynamics in both physical and scale space is finally presented, completing the classic single-point balances. Detailed scale-by-scale budgets for the second-order velocity and temperature structure functions are shown for different geometrical locations. An unexpected behaviour is observed in both the viscous and thermal transitional layers consisting of a diffusive reverse transfer from small to large scales of velocity and temperature fluctuations. Through the analysis of the instantaneous field in terms of the horizontal divergence, it is found that the enlargement of thermal plumes following the impingement represents the triggering mechanism which entails the reverse transfer. The coupling of this reverse transfer with the spatial transport towards the wall is an interesting mechanism found at the basis of some peculiar aspects of the flow. As an example, it is found that, during the impingement, the presence of the wall is felt by the plumes through the pressure field mainly at large scales. These and other peculiar aspects shed light on the role of thermal plumes in the self-sustained cycle of turbulence in RBC, and may have strong repercussions on both theoretical and modelling approaches to convective turbulence.
CITATION STYLE
Togni, R., Cimarelli, A., & De Angelis, E. (2015). Physical and scale-by-scale analysis of Rayleigh-Bénard convection. Journal of Fluid Mechanics, 782, 380–404. https://doi.org/10.1017/jfm.2015.547
Mendeley helps you to discover research relevant for your work.