Output decoupling property of planar flexure-based compliant mechanisms with symmetric configuration

7Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

This paper presents the output decoupling property of planar flexure-based compliant mechanisms with symmetric configuration. Compliance/stiffness modeling methods for flexure serial structures and flexure parallel structures are first derived according to the matrix method. Analytical model of mechanisms with symmetric configuration is then developed to analyze the output decoupling property. The proposed analytical model shows that mechanisms are output decoupled when they are symmetry about two perpendicular axes or when they are composed of either three or an even number of identical fundamental forms distributed evenly around the center. Finally, output compliances of RRR and 4-RRR compliant micro-motion stages are derived from the analytical model and finite element analysis (FEA). The comparisons indicate that the results obtained from the proposed analytical model are in good agreement with those derived from FEA, which validates the proposed analytical model.

Cite

CITATION STYLE

APA

Du, Y. S., Li, T. M., Jiang, Y., & Zhang, J. L. (2016). Output decoupling property of planar flexure-based compliant mechanisms with symmetric configuration. Mechanical Sciences, 7(1), 49–59. https://doi.org/10.5194/ms-7-49-2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free