Green synthesis of core–shell nanoparticles is gaining importance nowadays as it is viewed as being environmental friendly and cost effective. The present study aimed to synthesize iron@copper core–shell nanoparticles using a polysaccharide-based bioflocculant from Alcalegenis faecalis and to evaluate its efficiency in dye removal and river water and domestic wastewater treatment. The synthesized samples were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, transmission electron microscopy, and UV-Vis spectroscopy analysis. To optimize the best concentration for core–shell formation, different ratios of iron to copper were prepared. Sample 1 (S1) contained 1:3 iron to copper (Fe 25%–Cu 75%), sample 2 (S2) contained 1:1 iron to copper (Fe 50%–Cu 50%), and the third sample (S3) contained 3:1 iron to copper (Fe 75%–Cu 25%). The flocculation activity (FA) was above 98% at 0.2 mg/mL for all the samples and the samples flocculated well under acidic, alkaline, and neutral pH conditions. Sample 3 was shown to be thermostable, with flocculation activity above 90%, and samples 2 and 1 were also thermostable, but the flocculation decreased to 87 at 100◦ C. All three samples revealed some remarkable properties for staining dye removal as the removal efficiency was above 89% for all dyes tested. The synthesized core–shell nanoparticles could remove nutrients such as total nitrogen and phosphate in both domestic wastewater and Mzingazi river water. Furthermore, high removal efficiency for chemical oxygen demand (COD) and biological oxygen demand (BOD) was also observed.
CITATION STYLE
Dlamini, N. G., Basson, A. K., Emmanuel, S. J. S., & Pullabhotla, V. S. R. (2020). Optimization of fe@cu core–shell nanoparticle synthesis, characterization, and application in dye removal and wastewater treatment. Catalysts, 10(7). https://doi.org/10.3390/catal10070755
Mendeley helps you to discover research relevant for your work.