Impact ionization-induced bistability in CMOS transistors at cryogenic temperatures for capacitorless memory applications

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Cryogenic operation of complementary metal oxide semiconductor (CMOS) silicon transistors is crucial for quantum information science, but it brings deviations from standard transistor operation. Here, we report on sharp current jumps and stable hysteretic loops in the drain current as a function of gate voltage VG for both n- and p-type commercial-foundry 180-nm-process CMOS transistors when operated at voltages exceeding 1.3 V at cryogenic temperatures. The physical mechanism responsible for the device bistability is impact ionization charging of the transistor body, which leads to effective back-gating of the inversion channel. This mechanism is verified by independent measurements of the body potential. The hysteretic loops, which have a >107 ratio of high to low drain current states at the same VG, can be used for a compact capacitorless single-transistor memory at cryogenic temperatures with long retention times.

Cite

CITATION STYLE

APA

Zaslavsky, A., Richter, C. A., Shrestha, P. R., Hoskins, B. D., Le, S. T., Madhavan, A., & McClelland, J. J. (2021). Impact ionization-induced bistability in CMOS transistors at cryogenic temperatures for capacitorless memory applications. Applied Physics Letters, 119(4). https://doi.org/10.1063/5.0060343

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free