Determination of optimum position of shear wall in an irregular building for zone III & IV

0Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Stiffness is the property of the structure that is responsible for absorbing the external forces. For the case a multistory building, when the height of the building increases, the lateral stiffness of the building decreases. With low lateral stiffness, the building becomes more vulnerable to lateral forces like wind and earthquake. In order to prevent the structure from damage from the lateral forces, lateral stiffness is induced in the structure by means of shear walls. With the introduction of shear wall, we observe a considerable decrement in lateral displacement and increase in base shear. The resistance of lateral forces in terms of magnitude by shear wall depends on its location in the building. In this paper, a G+15 storey building is considered. The building is irregular in nature (T shaped). A comparative study is done to obtain the optimum position of shear wall in the structure. For optimization, the total length of the shear wall in the structure is kept constant. The whole modeling and analysis is done by ETABS v. 2016. The comparative study is done on the basis of base shear, storey displacement & storey drift. The above values are calculated by the dynamic approach of analysis of building subjected to seismic loading.

Cite

CITATION STYLE

APA

Banerjee, R., & Srivastava, J. B. (2019). Determination of optimum position of shear wall in an irregular building for zone III & IV. International Journal of Innovative Technology and Exploring Engineering, 9(1), 174–183. https://doi.org/10.35940/ijitee.A3970.119119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free