A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls

20Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present an open-source building performance simulation test bed, the Advanced Controls Test Bed (ACTB), that interfaces high-fidelity Spawn of EnergyPlus building models, with advanced controllers implemented in Python. The ACTB leverages the Building Optimization Testing and Alfalfa platforms for managing simulations, providing an external clock, a representational state transfer (REST) application programming interface (API), and key performance indicators for evaluating the effectiveness of control strategies. The REST API allows the development of external controllers programmed in languages such as Python, which provides flexibility and a rich choice of scientific libraries for designing control sequences. We present three test cases based on the U.S. Department of Energy's Reference Small Office Building to demonstrate the ACTB's capabilities: (a) rule-based controls compliant with ASHRAE Guideline 36 control sequences; (b) an economic model predictive control implemented using do-mpc; and (c) a deep Q-network reinforcement learning agent implemented using OpenAI Gym. Abbreviations: ACTB: Advanced Controller Test Bed; AHU: Air Handling Unit; AI:Artificial Intelligence; API: Application Programming Interface; BEM: Building EnergyModeling; BSS: Best Subset Selection; DOE: Department of Energy; DQN: Deep-QNetwork; EKF: Extended Kalman Filter; FMI: Functional Mock-up Interface; FMU:Functional Mock-up Unit; FSS: Forward Stepwise Selection; HVAC: Heating; Ventilationand Air Conditioning; KPI: Key Performance Indicator; LTI: Linear Time-Invariant; MBL: Modelica Buildings Library; MHE: Moving Horizon Estimator; MPC: ModelPredictive Control; N4SID: Numerical Subspace State-Space System Identification; REST: Representational State Transfer; RL: Reinforcement Learning; ROM: Reducedorder model.

Cite

CITATION STYLE

APA

Marzullo, T., Dey, S., Long, N., Leiva Vilaplana, J., & Henze, G. (2022). A high-fidelity building performance simulation test bed for the development and evaluation of advanced controls. Journal of Building Performance Simulation, 15(3), 379–397. https://doi.org/10.1080/19401493.2022.2058091

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free