Analytical study of the reflection and transmission coefficient of the submarine interface

7Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a “segmented” characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.

Cite

CITATION STYLE

APA

Zhang, G., Hao, C., & Yao, C. (2018). Analytical study of the reflection and transmission coefficient of the submarine interface. Acta Geophysica, 66(4), 449–460. https://doi.org/10.1007/s11600-018-0153-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free