Giant Spontaneous Magnetostriction in MnTe Driven by a Novel Magnetostructural Coupling Mechanism

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A comprehensive x-ray scattering study of spontaneous magnetostriction in hexagonal MnTe, an antiferromagnetic semiconductor with a Néel temperature of TN = 307 K, is presented. The largest spontaneous magnetovolume effect known for an antiferromagnet is observed, reaching a volume contraction of |ΔV/V| > 7 × 10−3. This can be justified semiquantitatively by considering bulk material properties, the spatial dependence of the superexchange interaction, and the geometrical arrangement of magnetic moments in MnTe. The highly unusual linear scaling of the magnetovolume effect with the short-range magnetic correlations, beginning in the paramagnetic state well above TN, points to a novel physical mechanism, which is explained in terms of a trilinear coupling of the elastic strain with superposed distinct domains of the antiferromagnetic order parameter. This novel mechanism for coupling lattice strain to robust short-range magnetic order casts new light on magnetostrictive phenomena and also provides a template by which the exceptional magnetostrictive properties of MnTe might be realized in a wide range of other functional materials.

Cite

CITATION STYLE

APA

Baral, R., Abeykoon, A. M. M., Campbell, B. J., & Frandsen, B. A. (2023). Giant Spontaneous Magnetostriction in MnTe Driven by a Novel Magnetostructural Coupling Mechanism. Advanced Functional Materials, 33(46). https://doi.org/10.1002/adfm.202305247

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free