WRF sensitivity analysis in wind and temperature fields simulation for the northern sahara and the mediterranean Basin

11Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Differnt configurations for the Weather Research and Forecasting (WRF) model were evaluated to improve wind and temperature fields predictions in the Northern Sahara and the Mediterranean basin. Eight setups, associated with different combinations of the surface layer physical parameters, the land surface model, and the grid nudging parameters, were considered. Numerical simulations covered the entire month of November 2017. Model results were compared with surface data from meteorological stations. The introduction of the grid nudging parameters leads to a general improvement of the modeled 10 m wind speed and 2 m temperature. In particular, nudging of wind speed parameter inside the planetary boundary layer (PBL) provides the most remarkable differences. In contrast, the nudging of temperature and relative humidity parameters inside the PBL may be switched off to reduce computational time and data storage. Furthermore, it was shown that the prediction of the 10 m wind speed and 2 m temperature is quite sensitive to the choice of the surface layer scheme and the land surface model. This paper provides useful suggestions to improve the setup of the WRF model in the Northern Sahara and the Mediterranean basin. These results are also relevant for topics related with the emission of mineral dust and sea spray within the Mediterranean region.

Cite

CITATION STYLE

APA

Rizza, U., Mancinelli, E., Canepa, E., Piazzola, J., Missamou, T., Yohia, C., … Miglietta, M. M. (2020). WRF sensitivity analysis in wind and temperature fields simulation for the northern sahara and the mediterranean Basin. Atmosphere, 11(3). https://doi.org/10.3390/atmos11030259

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free