Fibroblast-specific upregulation of Flightless I impairs wound healing

10Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response.

Cite

CITATION STYLE

APA

Turner, C. T., Waters, J. M., Jackson, J. E., Arkell, R. M., & Cowin, A. J. (2015). Fibroblast-specific upregulation of Flightless I impairs wound healing. Experimental Dermatology, 24(9), 692–697. https://doi.org/10.1111/exd.12751

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free