Fatigue and corrosion fatigue behaviour of brazed stainless steel joints AISI 304L/BAu-4 in synthetic exhaust gas condensate

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

As brazed stainless steel components in service often have to withstand cyclic loads in corrosive environments, the corrosion fatigue properties of brazed joints have to be characterised. Application-relevant corrosion fatigue tests in corrosive media are extremely rare for brazed joints and cyclic deformation curves are barely investigated. In this study, fatigue tests of brazed AISI 304L/BAu-4 joints were performed in air and synthetic exhaust gas condensate K2.2 according to VDA 230-214. The fatigue behaviour of the brazed joints was compared to properties of the austenitic base material. Strain, electrical, magnetic, temperature and electrochemical measurement techniques were applied within fatigue and corrosion fatigue tests to characterise the cyclic deformation and damage behaviour of the brazed joints. It was found that the fatigue strength of 397 MPa at 2 × 106 cycles was reduced down to 51% due to the superimposed corrosive loading. Divergent microstructure-related damage mechanisms were identified for corrosion fatigue loadings and fatigue loadings of specimens in the as-received and pre-corroded conditions. The investigations demonstrate the important role of corrosive environments for the mechanical performance of brazed stainless steel joints.

Cite

CITATION STYLE

APA

Schmiedt-Kalenborn, A., Lingnau, L. A., Manka, M., Tillmann, W., & Walther, F. (2019). Fatigue and corrosion fatigue behaviour of brazed stainless steel joints AISI 304L/BAu-4 in synthetic exhaust gas condensate. Materials, 12(7). https://doi.org/10.3390/ma12071040

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free