Abstract
Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ∼65 millivolts per decade and an On/Off current ratio of ∼106. Simulations show an effective channel length of ∼3.9 nm in the Off state and ∼1 nm in the On state.
Cite
CITATION STYLE
Desai, S. B., Madhvapathy, S. R., Sachid, A. B., Llinas, J. P., Wang, Q., Ahn, G. H., … Javey, A. (2016). MoS2 transistors with 1-nanometer gate lengths. Science, 354(6308), 99–102. https://doi.org/10.1126/science.aah4698
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.