Chondromodulin-1 (ChM-1) is a cartilage-specific glycoprotein that stimulates the growth of chondrocytes and inhibits the tube formation of endothelial cells. To clarify the tissue-specific expression and the role of ChM-1 in pathophysiological conditions, we analyzed the structure of the human ChM-1 gene and its promoter. On the screening of a human genomic cosmid library using the human ChM-1 complimentary DNA (cDNA) as a probe, two clones were obtained that contained ChM-1 cDNA. The restriction enzyme map and nucleotide sequence revealed the human ChM-1 gene consisting of seven exons and exon-intron boundaries. The human ChM-1 gene was assigned to chromosome 13q14-21 by fluorescence in situ hybridization (FISH) using the clone as a probe. A primer extension analysis using total RNA extracted from human cartilage revealed a major transcription start site with the sequence CGCT+1GG. The region approximately 3-kilobase (kb) nucleotides upstream of the translation start site was then sequenced and analyzed in terms of promoter activity. We found that a region 446 base pairs (bp) upstream of the start site had promoter activity in COS7, HeLa, and ATDC5 cells. In structure the promoter is a TATA-less type without a GC-rich region. The transcription factors Sox9, Og12, and Cart-1 did not affect the promoter activity. The transcription factor Ying-Yang1 suppressed the promoter activity but GABP protein did not change the promoter activity. The construct containing - 446/+87 fused to the SV40 enhancer and green fluorescent protein (GFP) exhibited expression of GFP corresponding to the differentiation of ATDC5 cells to mature chondrocytes. These results suggest that the element -446/+87 confers the cartilage-specific expression of this gene by some factor(s) other than Sox9, Og12, and Cart-1.
CITATION STYLE
Yanagihara, I., Yamagata, M., Sakai, N., Shukunami, C., Kurahashi, H., Yamazaki, M., … Ozono, K. (2000). Genomic organization of the human chondromodulin-1 gene containing a promoter region that confers the expression of reporter gene in chondrogenic ATDC5 cells. Journal of Bone and Mineral Research, 15(3), 421–429. https://doi.org/10.1359/jbmr.2000.15.3.421
Mendeley helps you to discover research relevant for your work.