Abstract
Changes in the characteristics, removal efficiency, and toxicity of pharmaceutical effluent organic matter (EfOM) after catalytic ozonation were investigated in this study. After a 90-min treatment with a catalytic ozonation process (COP) in the presence of MnO2 ceramsite, the total organic carbon (TOC), UV254, colority, protein, and humic acid removal rates were 13.24%, 60.83%, 85.42%, 29.36% and 74.19%, respectively. The polysaccharide content increased by 12.73 mg/L during the COP for reaction times between 0 and ~50 min and decreased by 6.97 mg/L between 50 and ~90 min. Furthermore, 64.44% of the total colority was detected in the hydrophobic organic matter (HOM) fraction, and after the COP, and 88.69% of the colority in the HOM was eliminated. Meanwhile, only 59.18% of the colority in the hydrophilic organic matter (HIM) fraction was removed. GC-MS analysis showed that 38 organic pollutant species were completely removed, 8 were partially removed, and 7 were generated. After 90 min of COP treatment, the pharmaceutical EfOM toxicity was effectively reduced based on the higher incubation and lower mortality rates.
Cite
CITATION STYLE
Wen, S., Chen, L., Li, W., Ren, H., Li, K., Wu, B., … Xu, K. (2018). Insight into the characteristics, removal, and toxicity of effluent organic matter from a pharmaceutical wastewater treatment plant during catalytic ozonation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27921-0
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.