Inferring human mobility using communication patterns

59Citations
Citations of this article
128Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often involve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.

Cite

CITATION STYLE

APA

Palchykov, V., Mitrovic, M., Jo, H. H., Saramäki, J., & Pan, R. K. (2014). Inferring human mobility using communication patterns. Scientific Reports, 4. https://doi.org/10.1038/srep06174

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free