Abstract
The synthesis of silver pyrovanadate, Ag4V2O7, nanoplates with exposed {0 0 1}-facets by a facile, additive-free hydrothermal method was described in this paper. The photocatalytic activity of rhodamine B over Ag4V2O7 samples under solar light irradiation was also evaluated. By using an equimolar mixture of NH4VO3 and AgNO3 with the presence of a suitable amount of ammonia, Ag4V2O7 nanoplates were obtained readily and purely at temperatures from 100 to 140°C for 4 h. In particular, the c-axis orientation growth of Ag4V2O7 nanoplates occurred and increased monotonously with temperatures in the range of over 100 up to 140°C. Further increase in hydrothermal temperature up to 220°C, the Ag4V2O7 phase no longer existed and the β-AgVO3 phase was formed instead. The photocatalytic activity of the optimized Ag4V2O7 sample comprising {0 0 1}-facet-exposed nanoplates with the highest degree of orientation was significantly higher than that of the random-oriented sample. The effects of using ammonia as a complexing agent on the structure, microstructure, texture, exposed facet, and photocatalytic activity of Ag4V2O7 samples were also investigated for the first time.
Cite
CITATION STYLE
Van, N. D., & Le, N. T. H. (2018). 0 0 1-Facet-exposed Ag4V2O7 nanoplates: Additive-free hydrothermal synthesis and enhanced photocatalytic activity. Journal of Nanomaterials, 2018. https://doi.org/10.1155/2018/8462764
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.