Deep learning for intake gesture detection from wrist-worn inertial sensors: The effects of data preprocessing, sensor modalities, and sensor positions

22Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wrist-worn inertial measurement units have emerged as a promising technology to passively capture dietary intake data. State-of-the-art approaches use deep neural networks to process the collected inertial data and detect characteristic hand movements associated with intake gestures. In order to clarify the effects of data preprocessing, sensor modalities, and sensor positions, we collected and labeled inertial data from wrist-worn accelerometers and gyroscopes on both hands of 100 participants in a semi-controlled setting. The method included data preprocessing and data segmentation, followed by a two-stage approach. In Stage 1, we estimated the probability of each inertial data frame being intake or non-intake, benchmarking different deep learning models and architectures. Based on the probabilities estimated in Stage 1, we detected the intake gestures in Stage 2 and calculated the F1 score for each model. Results indicate that top model performance was achieved by a CNN-LSTM with earliest sensor data fusion through a dedicated CNN layer and a target matching technique (F1 = .778). As for data preprocessing, results show that applying a consecutive combination of mirroring, removing gravity effect, and standardization was beneficial for model performance, while smoothing had adverse effects. We further investigate the effectiveness of using different combinations of sensor modalities (i.e., accelerometer and/or gyroscope) and sensor positions (i.e., dominant intake hand and/or non-dominant intake hand).

Cite

CITATION STYLE

APA

Heydarian, H., Rouast, P. V., Adam, M. T. P., Burrows, T., Collins, C. E., & Rollo, M. E. (2020). Deep learning for intake gesture detection from wrist-worn inertial sensors: The effects of data preprocessing, sensor modalities, and sensor positions. IEEE Access, 8, 164936–164949. https://doi.org/10.1109/ACCESS.2020.3022042

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free