T-2 toxin-induced oxidative stress leads to imbalance of mitochondrial fission and fusion to activate cellular apoptosis in the human liver 7702 cell line

54Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

T-2 toxin, as a highly toxic mycotoxin to humans and animals, induces oxidative stress and apoptosis in various cells and tissues. Apoptosis and mitochondrial fusion/fission are two tightly interconnected processes that are crucial for maintaining physiological homeostasis. However, the role of mitochondrial fusion/fission in apoptosis of T-2 toxin remains unknown. Hence, we aimed to explore the putative role of mitochondrial fusion/fission on T-2 toxin induced apoptosis in normal human liver (HL-7702) cells. T-2 toxin treatment (0, 0.1, 1.0, or 10 µg/L) for 24 h caused decreased cell viability and ATP concentration and increased production of (ROS), as seen by a loss of mitochondrial membrane potential (ΔΨm) and increase in mitochondrial fragmentation. Subsequently, the mitochondrial dynamic imbalance was activated, evidenced by a dose-dependent decrease and increase in the protein expression of mitochondrial fusion (OPA1, Mfn1, and Mfn2) and fission (Drp1 and Fis1), respectively. Furthermore, the T-2 toxin promoted the release of cytochrome c from mitochondria to cytoplasm and induced cell apoptosis triggered by upregulation of Bax and Bax/Bcl-2 ratios, and further activated the caspase pathways. Taken together, these results indicate that altered mitochondrial dynamics induced by oxidative stress with T-2 toxin exposure likely contribute to mitochondrial injury and HL-7702 cell apoptosis.

Cite

CITATION STYLE

APA

Yang, J., Guo, W., Wang, J., Yang, X., Zhang, Z., & Zhao, Z. (2020). T-2 toxin-induced oxidative stress leads to imbalance of mitochondrial fission and fusion to activate cellular apoptosis in the human liver 7702 cell line. Toxins, 12(1). https://doi.org/10.3390/toxins12010043

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free