Combined fluorescence-based in vitro assay for the simultaneous detection of cell viability and alkaline phosphatase activity during osteogenic differentiation of osteoblast precursor cells

27Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Novel bone substitute materials need to be evaluated in terms of their osteogenic differentiation capacity and possible unwanted cytotoxic effects in order to identify promising candidates for the therapy of bone defects. The activity of alkaline phosphatase (ALP) is frequently quantified as an osteogenic marker, while various colorimetric assays, like MTT assay, are used to monitor cell viability. In addition, the DNA or protein content of the samples needs to be quantified for normalization purposes. As this approach is time consuming and often requires the analysis of multiple samples, we aimed to simplify this process and established a protocol for the combined fluorescence-based quantification of ALP activity and cell viability within one single measurement. We demonstrate that the fluorogenic substrate 4-methylumbelliferone-phosphate (4-MUP) and the commonly used para-nitrophenylphosphate (p-NPP) produce comparable and highly correlating results. We further show that fluorescein–diacetate (FDA) can be used to quantify both cell viability and cell number without interfering with the quantification of ALP activity. The measurement of additional normalization parameters is, therefore, unnecessary. Therefore, the presented assay allows for a time-efficient, simple and reliable analysis of both ALP activity and cell viability from one sample and might facilitate experiments evaluating the osteogenic differentiation of osteoblast precursor cells.

Cite

CITATION STYLE

APA

Wilkesmann, S., Westhauser, F., & Fellenberg, J. (2020). Combined fluorescence-based in vitro assay for the simultaneous detection of cell viability and alkaline phosphatase activity during osteogenic differentiation of osteoblast precursor cells. Methods and Protocols, 3(2), 1–9. https://doi.org/10.3390/mps3020030

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free