Extraction of features from sleep EEG for Bayesian assessment of brain development

23Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy.

Cite

CITATION STYLE

APA

Schetinin, V., & Jakaite, L. (2017). Extraction of features from sleep EEG for Bayesian assessment of brain development. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free