Despite having been discovered more than three decades ago, high temperature superconductors (HTSs) lack both an explanation for their mechanisms and a systematic way to search for them. To aid this search, this project proposes ScGAN, a generative adversarial network (GAN) to efficiently predict new superconductors. ScGAN was trained on compounds in Open Quantum Materials Database and then transfer learned onto the SuperCon database or a subset of it. Once trained, the GAN was used to predict superconducting candidates, and approximately 70% of them were determined to be superconducting by a classification model-a 23-fold increase in discovery rate compared to manual search methods. Furthermore, more than 99% of predictions were novel materials, demonstrating that ScGAN was able to potentially predict completely new superconductors, including several promising HTS candidates. This project presents a novel, efficient way to search for new superconductors, which may be used in technological applications or provide insight into the unsolved problem of high temperature superconductivity.
CITATION STYLE
Kim, E., & Dordevic, S. V. (2024). ScGAN: a generative adversarial network to predict hypothetical superconductors. Journal of Physics Condensed Matter, 36(2). https://doi.org/10.1088/1361-648X/acfdeb
Mendeley helps you to discover research relevant for your work.