This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling. © 2013 The Author(s).
CITATION STYLE
Heinrich, G., Gobiet, A., & Mendlik, T. (2014). Extended regional climate model projections for Europe until the mid-twentyfirst century: Combining ENSEMBLES and CMIP3. Climate Dynamics, 42(1–2), 521–535. https://doi.org/10.1007/s00382-013-1840-7
Mendeley helps you to discover research relevant for your work.