The proton conduction properties of a phosphonato-sulfonate-based coordination polymer are studied by impedance spectroscopy using a single crystal specimen. Two distinct conduction mechanisms are identified. Water-mediated conductance along the crystal surface occurs by mass transport, as evidenced by a high activation energy (0.54 eV). In addition, intrinsic conduction by proton ′hopping′ through the interior of the crystal with a low activation energy (0.31 eV) is observed. This latter conduction is anisotropic with respect to the crystal structure and seems to occur through a channel along the c axis of the orthorhombic crystal. Proton conduction is assumed to be mediated by sulfonate groups and non-coordinating water molecules that are part of the crystal structure.
CITATION STYLE
Javed, A., Wagner, T., Wöhlbrandt, S., Stock, N., & Tiemann, M. (2020). Proton Conduction in a Single Crystal of a Phosphonato-Sulfonate-Based Coordination Polymer: Mechanistic Insight. ChemPhysChem, 21(7), 605–609. https://doi.org/10.1002/cphc.202000102
Mendeley helps you to discover research relevant for your work.