Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation

51Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Atrial fibrillation (AF) rat models and rat cardiac fibroblasts (CFs) with overexpressed or inhibited miR-10a were used to investigate the possible role of miR-10a-mediated transforming growth factor-β (TGF-β1)/Smads signaling in cardiac fibrosis and fibroblast proliferation in rats with AF. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-10a in cardiac fibrosis. The results showed that overexpressed miR-10a significantly prolonged the duration of AF, further elevated the collagen volume fraction (CVF), and increased the viability of CFs in AF rats; these findings were in contrast with the findings for rats with inhibition of miR-10a (all P<0.05). Moreover, miR-10a overexpression could promote miR-10a, collagen-I, collagen III, α-SMA, and TGF-β1 protein expression and increase the levels of hydroxyproline but reduced Smad7 protein expression in atrial tissues and CFs in AF rats. Not surprisingly, inhibiting miR-10a led to completely contrasting results (all P<0.05). Moreover, TGF-β1 treatment could reverse the inhibitory effect of miR-10a down-regulation on cardiac fibrosis in CFs. Bioinformatics analysis and luciferase reporter assay results demonstrated that miR-10a bound directly to the 3-UTR of BCL6, which is involved in cell growth and proliferation. Thus, our study indicate that down-regulation of miR-10a may inhibit collagen formation, reduce atrial structure remodeling, and decrease proliferation of CFs, eventually suppressing cardiac fibrosis in AF rats via inhibition of the TGF-β1/Smads signaling pathway.

Cite

CITATION STYLE

APA

Li, P. F., He, R. H., Shi, S. B., Li, R., Wang, Q. T., Rao, G. T., & Yang, B. (2019). Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation. Bioscience Reports, 39(2). https://doi.org/10.1042/BSR20181931

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free