Abstract
Tumor progression is intrinsically tied to the clonal selection of tumor cells with acquired phenotypes allowing to cope with a hostile microenvironment. Hypoxia-inducible factors (HIFs) master the transcriptional response to local tissue hypoxia, a hallmark of solid tumors. Here, we report significantly longer patient survival in breast cancer with high levels of HIF-2α. Amphiregulin (AREG) and WNT1-inducible signaling pathway protein-2 (WISP2) expression was strongly HIF-2α-dependent and their promoters were particularly responsive to HIF-2α. The endogenous AREG promoter recruited HIF-2α in the absence of a classical HIF-DNA interaction motif, revealing a novel mechanism of gene regulation. Loss of AREG expression in HIF-2α-depleted cells was accompanied by reduced activation of epidermal growth factor (EGF) receptor family members. Apparently opposing results from patient and in vitro data point to an HIF-2α-dependent auto-stimulatory tumor phenotype that, while promoting EGF signaling in cellular models, increased the survival of diagnosed and treated human patients. Our findings suggest a model where HIF-2α-mediated autocrine growth signaling in breast cancer sustains a state of cellular self-sufficiency, thereby masking unfavorable microenvironmental growth conditions, limiting adverse selection and improving therapy efficacy. Importantly, HIF-2α/AREG/WISP2-expressing tumors were associated with luminal tumor differentiation, indicative of a better response to classical treatments. Shifting the HIF-1/2α balance toward an HIF-2-dominated phenotype could thus offer a novel approach in breast cancer therapy. © 2012 Macmillan Publishers Limited All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Stiehl, D. P., Bordoli, M. R., Abreu-Rodríguez, I., Wollenick, K., Schraml, P., Gradin, K., … Wenger, R. H. (2012). Non-canonical HIF-2α function drives autonomous breast cancer cell growth via an AREG-EGFR/ErbB4 autocrine loop. Oncogene, 31(18), 2283–2297. https://doi.org/10.1038/onc.2011.417
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.