From Epidemiology of Community-Onset Bloodstream Infections to the Development of Empirical Antimicrobial Treatment-Decision Algorithm in a Region with High Burden of Antimicrobial Resistance

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Antimicrobial-resistant (AMR) infections have increased in community settings. Our objectives were to study the epidemiology of community-onset bloodstream infections (BSIs), identify risk factors for AMR-BSI and mortality-related factors, and develop the empirical antimicrobial treatment-decision algorithm. All adult, positive blood cultures at the emergency room and outpatient clinics were evaluated from 08/2021 to 04/2022. AMR was defined as the resistance of organisms to an antimicrobial to which they were previously sensitive. A total of 1151 positive blood cultures were identified. There were 450 initial episodes of bacterial BSI, and 114 BSIs (25%) were AMR-BSI. Non-susceptibility to ceftriaxone was detected in 40.9% of 195 E. coli isolates and 16.4% among 67 K. pneumoniae isolates. A treatment-decision algorithm was developed using the independent risk factors for AMR-BSI: presence of multidrug-resistant organisms (MDROs) within 90 days (aOR 3.63), prior antimicrobial exposure within 90 days (aOR 1.94), and urinary source (aOR 1.79). The positive and negative predictive values were 53.3% and 83.2%, respectively. The C-statistic was 0.73. Factors significantly associated with 30-day all-cause mortality were Pitt bacteremia score (aHR 1.39), solid malignancy (aHR 2.61), and urinary source (aHR 0.30). In conclusion, one-fourth of community-onset BSI were antimicrobial-resistant, and one-third of Enterobacteriaceae were non-susceptible to ceftriaxone. Treatment-decision algorithms may reduce overly broad antimicrobial treatment.

Cite

CITATION STYLE

APA

Chotiprasitsakul, D., Trirattanapikul, A., Namsiripongpun, W., Chaihongsa, N., & Santanirand, P. (2023). From Epidemiology of Community-Onset Bloodstream Infections to the Development of Empirical Antimicrobial Treatment-Decision Algorithm in a Region with High Burden of Antimicrobial Resistance. Antibiotics, 12(12). https://doi.org/10.3390/antibiotics12121699

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free