Flexural Behaviour of Geopolymer RC Beam with Scrap Steel Slag Coarse Aggregate

  • N* S
  • et al.
N/ACitations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This research work aims adding further sustainability to the cement - less geopolymer concrete by replacing its natural gravel coarse aggregate by an industrial by-product, scrap steel slag. Geopolymer RC beam of grade M40 with 100% scrap steel as coarse aggregate was studied for its flexural behavior and compared with conventional reinforced cement concrete beam with gravel coarse aggregate. The specimens were tested under two-point static loading. The analysis was also carried out using ANSYS software. The study derived that in all stages, the performance of the geopolymer beam with scrap steel slag was marginally better than the conventional beam with gravel coarse aggregate. The ultimate load carrying capacity, deflection, service load and ductility factor of geopolymer RC beam with scrap steel slag coarse aggregate was comparable to the conventional cement concrete RC beam and is marginally higher. It is also found that conventional RC theory can be used in the calculation of moment capacity, deflection and crack width of the geopolymer beam of study and FE modeling and analysis using ANSYS were comparable to the experimental results.

Cite

CITATION STYLE

APA

N*, Suganya., & S, Thirugnanasambandam. (2019). Flexural Behaviour of Geopolymer RC Beam with Scrap Steel Slag Coarse Aggregate. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 10872–10875. https://doi.org/10.35940/ijrte.d4406.118419

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free