Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska

103Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

Abstract

Postfire changes in the local energy balance and soil chemistry may significantly alter rates of carbon turnover in organic-rich soils of boreal forests. This study combines field measurements of soil carbon uptake and emission along a 140-year chronosequence of burned black spruce stands to evaluate the timescales over which these disturbance effects operate. Soil CO2 efflux increased as a function of stand age at a mean rate of 0.12 Mg C ha 1 yr-2 up to a maximum of 2.2 Mg C ha-1 yr-1 in the 140-year-old stand. During this same time period, organic soil horizons sequestered carbon and nitrogen at rates of 0.28-0.54 and 0.0076 Mg N ha-1 yr-1, respectively. A mass balance model based on field measurements suggests that postfire changes in root and microbial respiration caused these soils to function as a net source of carbon for 7-15 years after fire, releasing between 1.8 and 11.0 Mg C ha-1 to the atmosphere (12.4-12.6% of total soil organic matter). These estimates are on the same order of magnitude as carbon losses during combustion and suggest that current models may underestimate the effect of fire on carbon emissions by a factor of 2.

Cite

CITATION STYLE

APA

O’Neill, K. P., Kasischke, E. S., & Richter, D. D. (2003). Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska. Journal of Geophysical Research: Atmospheres, 108(1). https://doi.org/10.1029/2001jd000443

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free