Abstract
Optimizing phosphorus (P) application to agricultural soils is fundamental to crop production and water quality protection. We sought to relate soil P tests and P sorption characteristics to both crop yield response to P application and environmentally critical soil P status. Barley (Hordeum vulgare L.) was grown in pot experiments with 45 soils of different P status. Half the pots were fertilized at 20 kg P ha−1, and half received no P. Soils were extracted with ammonium lactate, sodium bicarbonate (Olsen P), dilute salt (0.0025 M CaCl2), and diffusive gradient in thin films. Soil adsorption coefficients were determined using the Freundlich isotherm equation, and the degree of P saturation was determined from both oxalate and ammonium lactate extracted Fe, Al, and P. All soil P analyses showed a nonlinear and significant relationship with yield response to P application, and all analyses manifested a threshold value above which no P response was observed. For the commonly used ammonium lactate test, inclusion of Al and Fe improved prediction of plant-available soil P. The threshold for yield response coincided with the environmentally critical values determined from the degree of P saturation. Results support the conclusion that soil P levels for which no P application is needed also have elevated risk of P loss to runoff.
Cite
CITATION STYLE
Kristoffersen, A. Ø., Krogstad, T., & Øgaard, A. F. (2020). Prediction of available phosphorus in soil: Combined use for crop production and water quality protection. Journal of Environmental Quality, 49(6), 1575–1584. https://doi.org/10.1002/jeq2.20165
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.