Abstract
This paper proposed a wearable smart sEMG recorder integrated gradient boosting decision tree (GBDT) based hand gesture recognition. A hydrogel-silica gel based flexible surface electrode band is used as the tissue interface. The sEMG signal is collected using a neural signal acquisition analog front end (AFE) chip. A quantitative analysis method is proposed to balance the algorithm complexity and recognition accuracy. A parallel GBDT implementation is proposed featuring a low latency. The proposed GBDT based neural signal processing unit (NSPU) is implemented on an FPGA near the AFE. A RF module is used for wireless communication. A hand gesture set including 12 gestures is designed for human-computer interaction. Experimental results show an overall hand gesture recognition accuracy of 91%.
Cite
CITATION STYLE
Song, W., Han, Q., Lin, Z., Yan, N., Luo, D., Liao, Y., … Bai, S. (2019). Design of a Flexible Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree Based Hand Gesture Recognition. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1563–1574. https://doi.org/10.1109/TBCAS.2019.2953998
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.