Variability in greenhouse gas footprints of the global wind farm fleet

4Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

While technological characteristics largely determine the greenhouse gas (GHG) emissions during the construction of a wind farm and meteorological circumstances the actual electricity production, a thorough analysis to quantify the GHG footprint variability (in g CO2eq/kWh electricity produced) between wind farms is still lacking at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms located across the globe, combining turbine-specific technological parameters, life-cycle inventory data, and location- and temporal-specific meteorological information. These wind farms represent 79% of the 651 global wind (GW) capacity installed in 2019. Our results indicate a median GHG footprint for global wind electricity of 10 g CO2eq/kWh, ranging from 4 to 56 g CO2eq/kWh (2.5th and 97.5th percentiles). Differences in the GHG footprint of wind farms are mainly explained by spatial variability in wind speed, followed by whether the wind farm is located onshore or offshore, the turbine diameter, and the number of turbines in a wind farm. We also provided a metamodel based on these four predictors for users to be able to easily obtain a first indication of GHG footprints of new wind farms considered. Our results can be used to compare the GHG footprint of wind farms to one another and to other sources of electricity in a location-specific manner.

Cite

CITATION STYLE

APA

Dammeier, L. C., Bosmans, J. H. C., & Huijbregts, M. A. J. (2023). Variability in greenhouse gas footprints of the global wind farm fleet. Journal of Industrial Ecology, 27(1), 272–282. https://doi.org/10.1111/jiec.13325

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free