Reduction of T2 relaxation rates due to large volume fractions of magnetic nanoparticles for all motional regimes

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Abstract: The effect of high volume fraction of magnetic nanoparticles (MNP) on Magnetic Resonance Imaging (MRI) transverse relaxation rates (R2 = 1/T2 and R2* = 1/T2*) is investigated using Monte Carlo (MC) simulations. Theoretical models assume that particles occupy a small volume fraction of the sample space. Results presented in this work show that models based on both motional averaged (MAR) and static dephasing (SDR) regimes respectively underestimate and overestimate relaxation rates at large volume fractions. Furthermore, both R2* and R2* become echo-time dependent. This suggests that diffusion is involved with larger echo-times producing smaller relaxation rates due to better averaging of the magnetic field gradients. Findings emphasize the need for the models to be modified to take account of high particle concentration especially important for application involving clustering and trapping of nanoparticles inside cells. This is important in order to improve the design process of MNP Contrast Agents.

Cite

CITATION STYLE

APA

Issa, B. (2018). Reduction of T2 relaxation rates due to large volume fractions of magnetic nanoparticles for all motional regimes. Applied Sciences (Switzerland), 8(1). https://doi.org/10.3390/app8010101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free