Graphene oxide (GO) is an excellent absorbent for heavy ion from wastewater, but it is hard to separate from water. To improve the adsorption capacity and separation performance of GO to nickel-containing wastewater, a composite magnetic GO-ATP adsorbent (MGA) was prepared by magnetizing GO and attapulgite (ATP) using ferroferric oxide and then carrying out hydrothermal reaction. The adsorption capacity and mechanism of MGA were investigated based on Ni2+ as targeted pollutant. Experimental results showed that the pH value significantly affects the removal rate of Ni2+, which is mainly due to that OH- in wastewater reacts with Ni2+, resulting in sediment that leads to the increase of removal rate. MGA can achieve max adsorption capacity of Ni2+ to 190.8 mg/g at pH = 5, and the adsorption process was mainly determined by chemical adsorption, which was in line with pseudo-secondary dynamics model. The adsorption was basically homogeneous monolayer adsorption with heat release, which was more agree with Langmuir adsorption isotherm equation. the adsorption process of Ni2+ by MGA. The adsorption process was a spontaneous process and an exothermic reaction. It can be confirmed that the prepared MGA adsorbent can realize slurry separation using magnetic separation principle and has high adsorption capacity to Ni2+.
CITATION STYLE
Wei, B., Zhu, X., & Cheng, X. (2017). Facile Preparation of Magnetic Graphene Oxide and Attapulgite Composite Adsorbent for the Adsorption of Ni (II). In IOP Conference Series: Earth and Environmental Science (Vol. 104). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/104/1/012019
Mendeley helps you to discover research relevant for your work.