A smart charging profile was implemented on 39 public charging stations in Amsterdam on which the current level available for electric vehicle (EV) charging was limited during peak hours on the electricity grid (07:00-08:30 and 17:00-20:00) and was increased during the rest of the day. The impact of this profile was measured on three indicators: average charging power, amount of transferred energy and share of positively and negatively affected sessions. The results are distinguished for different categories of electric vehicles with different charging characteristics (number of phases and maximum current). The results depend heavily on this categorisation and are a realistic measurement of the impact of smart charging under real world conditions. The average charging power increased as a result of the new profile and a reduction in the amount of transferred energy was detected during the evening hours, causing outstanding demand which was solved at an accelerated rate after limitations were lifted. For the whole population, 4% of the sessions were positively affected (charged a larger volume of energy) and 5% were negatively affected. These numbers are dominated by the large share of plug-in hybrid electric vehicles (PHEVs) in Amsterdam which are technically not able to profit from the higher current levels. For new generation electric vehicles, 14% of the sessions were positively affected and the percentage of negatively affected sessions was 5%.
CITATION STYLE
Bons, P. C., Buatois, A., Ligthart, G., Geerts, F., Piersma, N., & van den Hoed, R. (2020). Impact of smart charging for consumers in a real world pilot. World Electric Vehicle Journal, 11(1). https://doi.org/10.3390/WEVJ11010021
Mendeley helps you to discover research relevant for your work.