Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis

  • Ellsworth R
  • Toro A
  • Blackburn H
  • et al.
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Molecular heterogeneity within primary breast carcinomas and among axillary lymph node (LN) metastases may impact diagnosis and confound treatment. In this study, we used short tandem repeated sequences to assess genomic heterogeneity and to determine hereditary relationships among primary tumor areas and regional metastases from 30 breast cancer patients. We found that primary carcinomas were genetically heterogeneous and sampling multiple areas was necessary to adequately assess genomic variability. LN metastases appeared to originate at different time periods during disease progression from different sites of the primary tumor and the extent of genomic divergence among regional metastases was associated with a less favorable patient outcome ( P = 0.009). In conclusion, metastasis is a complex process influenced by primary tumor heterogeneity and variability in the timing of dissemination. Genomic variation in primary breast tumors and regional metastases may negatively impact clinical diagnostics and contribute to therapeutic resistance.

Cite

CITATION STYLE

APA

Ellsworth, R. E., Toro, A. L., Blackburn, H. L., Decewicz, A., Deyarmin, B., Mamula, K. A., … Ellsworth, D. L. (2015). Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis. Cancer Growth and Metastasis, 8, CGM.S29490. https://doi.org/10.4137/cgm.s29490

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free