Age and sex of mice markedly affect survival times associated with hyperoxic acute lung injury

7Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35-45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6-12 week X1 control strain. Sorting mice into distinct age groups revealed that 'age at exposure' inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3-4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age-and sex-specific studies to interrogate myriad subphenotypes affected during ALI development and progression and identify intermediary injury biomarkers that can predict outcome. Copyright:

Cite

CITATION STYLE

APA

Prows, D. R., Gibbons, W. J., Smith, J. J., Pilipenko, V., & Martin, L. J. (2015). Age and sex of mice markedly affect survival times associated with hyperoxic acute lung injury. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0130936

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free