Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties

147Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

This study addresses the cooperative fault-tolerant tracking control problem for a class of multi-agent systems subject to mismatched parameter uncertainties, external disturbances and actuator faults including loss of effectiveness, outage and stuck. The communication network is undirected connected graph with a fixed topology. It is assumed that the actuator efficiency factors, the upper bounds of the unparametrisable time-varying stuck faults and disturbance, are unknown. Different from the traditional centralised fault-tolerant tracking control problem, only part of the follower nodes can obtain the information of leader directly. On the basis of the local state information of neighbouring agents, a novel cooperative fault-tolerant tracking control scheme by using adaptive mechanism is proposed. By introducing the estimates of controller parameters driven by neighbourhood tracking errors, it is shown that not only the actuator faults in the follower nodes can be compensated, but also the global tracking objective can be achieved. Furthermore, it is proved that all closedloop signals are bounded and all follower nodes asymptotically tracking to the leader can be achieved in the presence of actuator faults, external disturbances and mismatched parameter uncertainties. Finally, a numerical example is given to show the effectiveness of the proposed control scheme.

Cite

CITATION STYLE

APA

Wang, X., & Yang, G. H. (2015). Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties. IET Control Theory and Applications, 9(8), 1274–1284. https://doi.org/10.1049/iet-cta.2014.0700

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free