This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of 5 × 5 metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels (H = 160 μm and H = 80 μm), thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels (H = 40 μm and H = 20 μm), it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.
CITATION STYLE
Hussain, N., Kedze, K. E., & Park, I. (2017). Performance of a planar leaky-wave slit antenna for different values of substrate thickness. Journal of Electromagnetic Engineering and Science, 17(4), 202–207. https://doi.org/10.26866/jees.2017.17.4.202
Mendeley helps you to discover research relevant for your work.